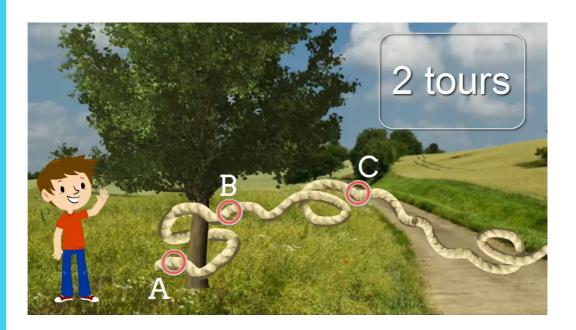


ÉNIGME

- LA CORDE DE LUDO -


-110

Matériel :

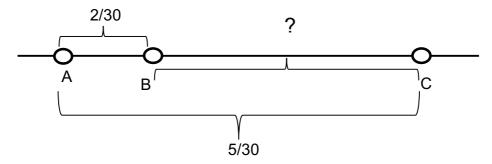
- Vidéo de l'énigme
- Feuilles de papier
- Crayons

Énoncé de l'énigme

En cette belle journée d'été, Ludo se promène dans le parc et trouve une grande corde enroulée. Sur cette corde, Ludo décide de faire 3 nœuds, le nœud A, le nœud B et le nœud C. Le morceau de corde AB correspond à un quinzième de la longueur totale et le morceau AC correspond à un sixième de la longueur totale. Si Ludo enroule le morceau AB autour d'un tronc d'arbre, il fait exactement deux tours complets.

Combien de tours Ludo peut-il effectuer sur le même tronc avec la longueur BC?

SOLUTION DE L'ÉNIGME


Voici la réponse :

Avec la longueur BC, Ludo pourrait faire 3 tours complets.

Voici la solution:

Tout d'abord, nous avons comme information que la longueur du segment de corde \overline{AB} représente le $\frac{1}{15}$ de la corde et que la longueur du segment de corde \overline{AC} représente le $\frac{1}{6}$ de la corde.

Pour faciliter la tâche, on doit commencer par mettre les fractions sur le même dénominateur. Ainsi, $\frac{1}{15}$ devient $\frac{2}{30}$ et $\frac{1}{6}$ devient $\frac{5}{30}$, puisque le plus petit dénominateur commun de 15 et 6 est 30.

Il nous est indiqué dans l'énoncé que la longueur du segment de corde \overline{AB} fait exactement deux tours complets du tronc d'arbre. Ainsi, nous savons que le $\frac{2}{30}$ de la corde équivaut à 2 tours complets. Grâce à cette information, nous pouvons déduire que le $\frac{1}{30}$ de la corde équivaut à 1 tour complet. Puisque la longueur du segment de corde \overline{AC} équivaut à $\frac{5}{30}$ de la corde, il nous est possible de faire 5 tours avec cette longueur.

La longueur du segment \overline{AB} additionné à la longueur du segment \overline{BC} équivaut à la longueur du segment \overline{AC} . De ceci, on conclut que le nombre de tours effectués par le segment de corde \overline{AB} additionné au nombre de tours effectués par le segment de corde \overline{BC} équivaut au nombre de tours effectués par le segment de corde \overline{AC} .

Il suffit donc de faire 5-2 pour trouver le nombre de tours effectués par la longueur du segment de corde \overline{BC} . Ceci est bel et bien égal à 3.

Une autre solution peut être envisagée. En effet, on aurait pu trouver la fraction de la longueur du segment \overline{BC} par rapport à la corde totale $(\frac{3}{30})$ et ensuite, en sachant que $\frac{1}{30}$ équivaut à un tour, trouver combien de tours la longueur \overline{BC} peut faire.